Chem 108: Class/ Lab Week 13

Pick a vial and a plastic dropper Using the vial number, sign-in on the Lab roster

> Pick up HANDOUTS
> 1) Fluid Exchange Form & Post Lab (Handout)
> 2) Acid-Bases: pH (Handout)

Fermentation / Distillation Report pp. 66-67 + POST LAB Questions

Due Today

http://chemconnections.org/general/chem120/ ethanol-ques-108.htm

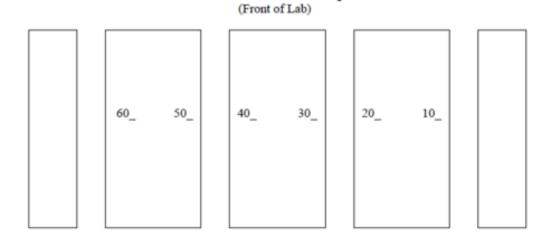
	Name:		
	Section:		
Report Form - Ferme Preparation of the solution	entation-Distillation	on	
Mass, sucrose + container			
Mass, container			
Mass, sucrose*			
imple Distillation			
Temperature Range	0	°C to	۰C
Volume of Distillate Collected			
Density and Percent Alcohol of the Distillate			
	Your Trial 1	Your Trial 2 (if necessar	
Volume of pipet			
Mass of vial, cap, (or beaker) and distillate			
Mass of vial and cap (or beaker)			
Mass of distillate*			
Density*			
Partner's Density			
Average Density (yours and your partner)*			
Percent alcohol*			
Percent alcohol* how the calculations for each of the entries in the Da	ta Table marked with *	* on the calculation	s page.
Report Form – Fermentation–Distillation			66

Chem 108: Class/ Lab Week 13: 2019s

Do Today: 1) Fluid Exchange (Handout) Due Next Lab

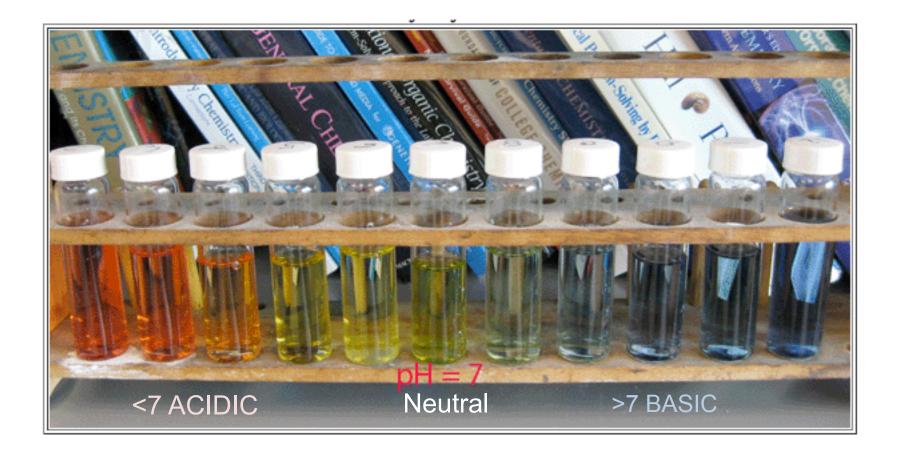
2) Acid-Base: pH (Handout) Data completed & signed before leaving Lab

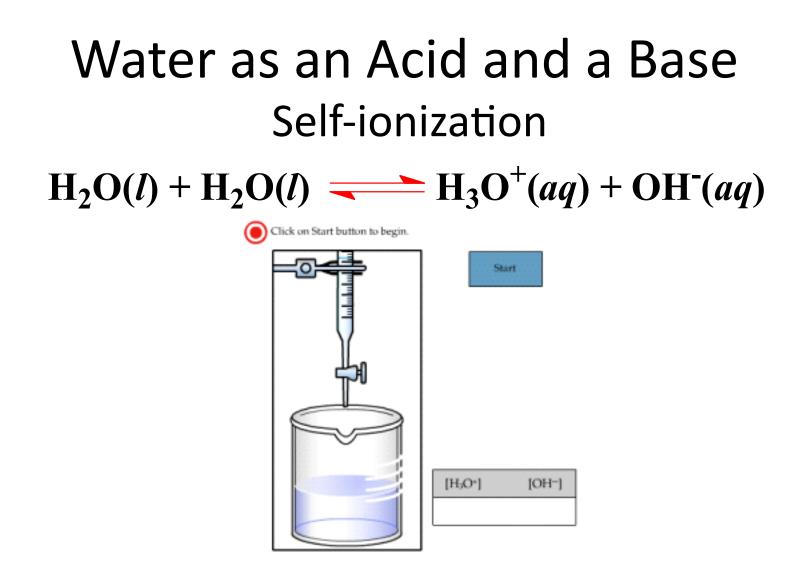
Follow Instructions


http://chemconnections.org/general/chem120/fluid-ex.108.html

Chem 108: Class/ Lab Week 13 TODAY: Fluid Exchange (Handout)

3) You have been assigned a geographical location for your Global Residence. Check the *Global Homelands Map*, which follows, for your location and if necessary move to your place of residence.


Global Homelands Map


http://chemconnections.org/general/chem120/fluid-ex.108.html

Wait for Dr. R's instructions on exchanging fluids, keeping records, and using the handout provided.

Acid-Base Indicators

http://chemconnections.org/general/movies/KwActivity.swf

Pure Water is an Acid and a Base

It is amphoteric. (It can behave either as an acid or a base).

 $H_2O(l) + H_2O(l) = H_3O^+(aq) + OH^-(aq)$

$$H_{2}O + H_{2}O \leftrightarrows H_{3}O^{+} + OH^{-}$$

conj conj
acid 1 base 2 acid 2 base 1

$$K = \frac{[H_{3}O^{+}][OH^{-}]}{[H_{2}O] [H_{2}O]} \cdot K_{w} = 1 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$$

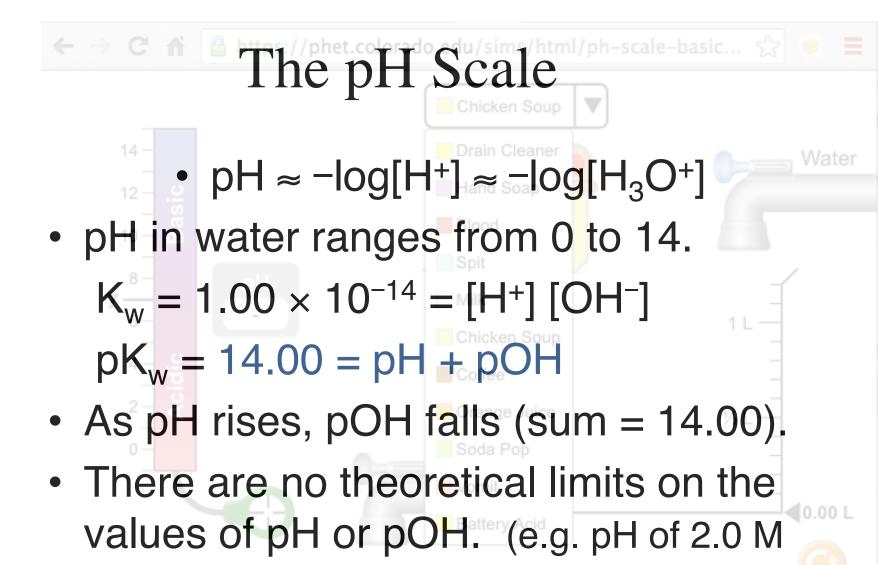
$$K_{w} = [H_{3}O^{+}][OH^{-}] = [1 \times 10^{-7}\text{M}][1 \times 10^{-7}\text{M}]$$

NOTE: only concentrations [mol/L] are used in the calculation; liquids (I) and solids (s) are not included https://phet.colorado.edu/en/simulation/ph-scale-basics

The pH Scale

pH: the negative logarithm of the hydrogen ion concentration.

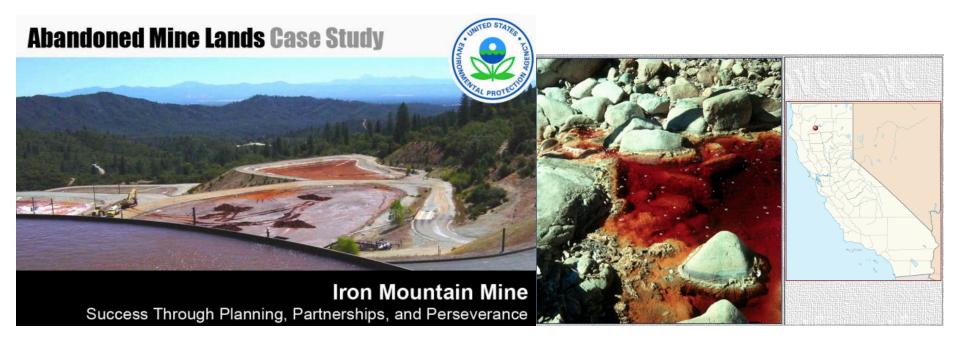
Beer's pH ~ 4



pH = -log[H+]

10⁰ 10-1 0.1 10⁻² 0.01 10-3 0.001 10-4 0.0001 10-5 0.00001 10-6 0.000001 10⁻⁷ 0.0000001 10-8 0.00000001 10⁻⁹ 0.000000001 10⁻¹⁰ 0.0000000001 10-11 0.00000000001 10-12 0.000000000000 10⁻¹³ 0.0000000000000 10-14 0.0000000000000000 Quantitative, logarithmic, numeric scale based on testing the electric current of aqueous solutions & relating it to the equilibrium concentration of the hydrogen ion, $[H^+_{(aq)}] = [H_3O^+_{(aq)}]$

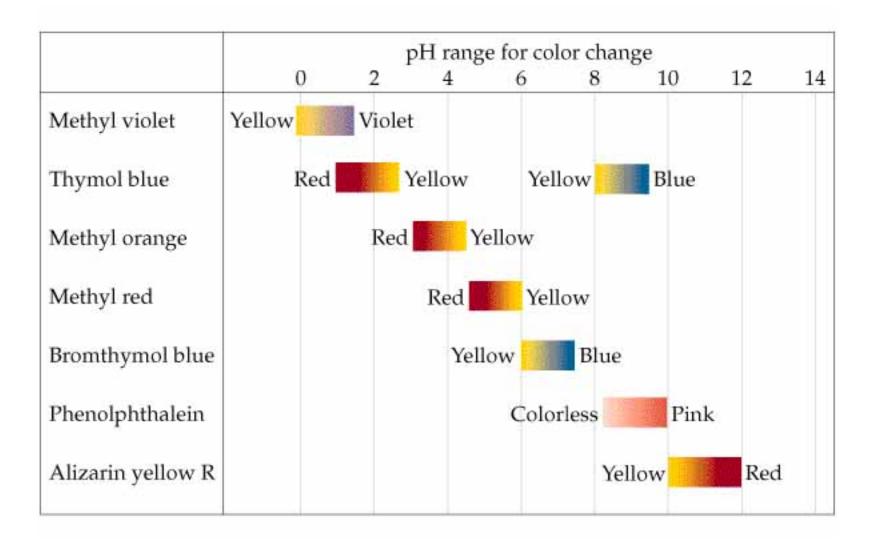
Introduced in 1909 by Søren Sørensen, Danish brewer/chemist, as a convenient way of expressing acidity...... Providing much improved quality control in brewing.


http://www.chemconnections.org/general/chem108/Acids-Bases%20Guide.html

PH https://phet.colorado.edu/en/simulation/ph-scale-basics

HCl is -0.301)

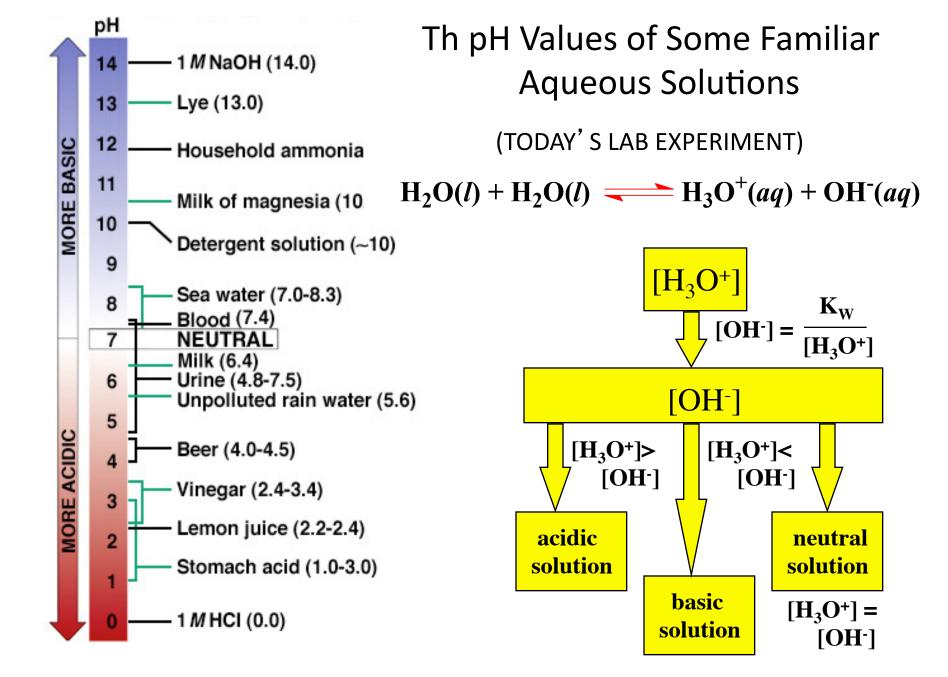
The pH Scale



The drainage water from the Iron Mountain Mine is the most acidic water on Earth; some samples collected in 1990 and 1991 have been measured to have a pH value of -3.6, which is the lowest pH observed globally in a natural environment.

Indicators

Acid-Base Indicators



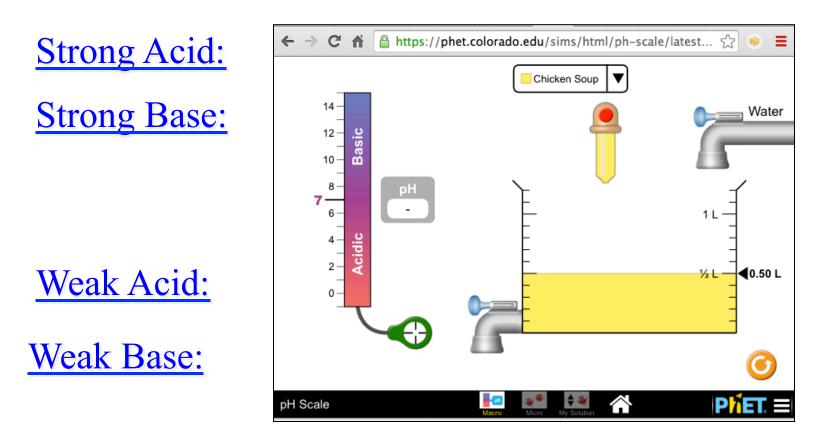
0	10 ⁰	1
1	10 ⁻¹	0.1
2	10 ⁻²	0.01
3	10 ⁻³	0.001
- 4	10-4	0.0001
5	10-5	0.00001
6	10-6	0.000001
7	10 ⁻⁷	0.0000001
8	10 ⁻⁸	0.00000001
9	10 ⁻⁹	0.000000001
10	10 ⁻¹⁰	0.0000000001
11	10 ⁻¹¹	0.0000000001
12	10 ⁻¹²	0.00000000001
13	10 ⁻¹³	0.0000000000001
14	10 ⁻¹⁴	0.00000000000001

$pH = -log[H+] = -log[H_3O^+]$

10-14	10-13	10 ⁻¹²	10-11	10-10	10 ⁻⁹	10 ⁻⁸	10 ^{.7}	10-6	10-5	10-4	10 ⁻³	10 ⁻²	10-1	10 ⁰
						_						1 (H+]: 10,000,0	00 [OH-]
							1:1							[OH-]
0	1	2					7	8	9	10	11	12	13	14
ACIDIC							NEUTRAL							BASIC
[H+]														
10.000.00	o	011.1												
10,000,00	0 [H+] : 1 [OH-]												
10 ⁰	10-1	10 ⁻²	10 ⁻³	10-4	10-5	10 ⁻⁶	10-7	10-8	10 ⁻⁹	10 ⁻¹⁰	10-11	10 ⁻¹²	10 ⁻¹³	10-14

			[H ₃ O ⁺]	pH	[OH-]	рОН
The	\cap	_	1.0 × 10 ⁻¹⁵	15.00	1.0 × 10 ¹	-1.00
Relations	<u>0</u>		1.0×10^{-14}	14.00	1.0×10^{0}	0.00
Among	BASIC		1.0×10^{-13}	13.00	1.0×10^{-1}	1.00
[H ₃ O+],		BASIC	1.0 × 10 ⁻¹²	12.00	1.0×10^{-2}	2.00
рН,	MORE		1.0 ×10 ⁻¹¹	11.00	1.0×10^{-3}	3.00
[OH⁻],	Ĕ		1.0 × 10 ⁻¹⁰	10.00	1.0×10^{-4}	4.00
			1.0 × 10 ⁻⁹	9.00	1.0×10^{-5}	5.00
and pOH			1.0 × 10 ⁻⁸	8.00	1.0×10^{-6}	6.00
		NEUTRAL	1.0 × 10 ⁻⁷	7.00	1.0×10^{-7}	7.00
			1.0 × 10 ⁻⁶	6.00	1.0 × 10 ⁻⁸	8.00
	C		1.0×10^{-5}	5.00	1.0×10^{-9}	9.00
	ACIDIC		1.0×10^{-4}	4.00	1.0×10^{-10}	10.00
	AC		1.0 ×10 ^{−3}	3.00	1.0×10^{-11}	11.00
		ACIDIC	1.0 × 10 ⁻²	2.00	1.0×10^{-12}	12.00
	MORE		1.0 ×10 ^{−1}	1.00	1.0×10^{-13}	13.00
	-		1.0 × 10 ⁰	0.00	1.0×10^{-14}	14.00
			1.0 × 10 ¹	-1.00	1.0×10^{-15}	15.00

Chem 108: Class/ Lab Week 13


1) Fluid Exchange (Handout) *Due Next Lab*

TODAY:
2) Acid-Base: pH (Handout)
Data table completed & signed before leaving Lab

Due Next Week: Fully Completed Handout plus On-line Questions http://chemconnections.org/general/chem108/Acids-Bases%20Guide.html

Acid-Base Strengths pH [indicator paper & pH meter]

https://phet.colorado.edu/en/simulation/ph-scale

http://www.chemconnections.org/general/chem108/Acids-Bases%20Guide.html

pH = -log[H+]

-		U
0	10 ⁰	1
1	10 ⁻¹	0.1
2	10 ⁻²	0.01
3	10 ⁻³	0.001
- 4	10-4	0.0001
5	10-5	0.00001
6	10-6	0.000001
7	10 ⁻⁷	0.0000001
8	10 ⁻⁸	0.00000001
9	10 ⁻⁹	0.000000001
10	10 ⁻¹⁰	0.000000001
11	10 ⁻¹¹	0.0000000001
12	10 ⁻¹²	0.00000000001
13	10 ⁻¹³	0.000000000001
14	10 ⁻¹⁴	0.00000000000001

		D 11.	Blue	Solu	tion pH		
		Red Litmus	Litmus	pH Paper	Indicator	pH Meter	Description
А	HCl(aq) [stomach acid]	red	red	1	2	1.0	acíd
В	NaOH(aq) [drain cleaner]	blue	blue	13	14	13.0	base
С	H ₂ O(l) [deionized water]	red	blue	7	7	7.0	Neutral (H2O is BOTH: acid & base)
D	$H_2O(l) + CO_2(aq)$ [carbonated water] (Seltzer)						
Е	Na ₂ CO ₃ (aq) [sodium carbonate]						
F	CH ₃ COOH(aq) [acetic acid] (vinegar)						
G	CH ₃ COO ⁻ , Na ⁺ (aq) [sodium acetate]						

Н	NH ₃ (aq) [ammonia] (cleaner)					
Ι	NH ₄ Cl(aq) [ammonium chloride]					
J	NaCl(aq) [sodium chloride]					
Κ	NaOCl(aq) [sodium hypochlorite] (bleach)					
L	Mg(OH) ₂ Milk of Magnesia					
Μ	Lemon juice					
Ν	Milk	red	red	6	7	
0	Saliva (spit) and blood	blue	blue	7	7	
Р	Vomit	red	red	1	2	
Q	Buffer (pH 7)	red	blue	7	7	

Lab pH: pH Meter

			Blue	Solu	tion pH	1	
		Red Litmus	Litmus	pH Paper	Indicator	pH Meter	Description
Α	HCl(aq) [stomach acid]	red	red	1	2	1.0	aciá
В	NaOH(aq) [drain cleaner]	вие	blue	13	14	13.0	base
С	H ₂ O(I) [deionized water]	red	blue	7	7	7.0	Nentral (H2O is BOTH: acid & base)
D	H ₂ O(l) + CO ₂ (aq) [carbonated water] (Seltzer)					6.4	
E	Na ₂ CO ₃ (aq) [sodium carbonate]					10.1	
F	CH ₃ COOH(aq) [acetic acid] (vinegar)					4.7	
G	CH ₃ COO ⁻ , Na ⁺ (aq) [sodium acetate]					8.4	
н	NH ₃ (aq) [ammonia] (cleaner)		/ LABQUEST*/	Ran 1	_	12.0	
Ι	NH ₄ Cl(aq) [ammonium chloride]		u = 2 Time (min) 2 = 102	63.0 min		6.1	
J	NaCl(aq) [sodium chloride]		COMMICIUD	SCRINCE SYSTEM?		7.0	
K	NaOCI(aq) [sodium hypochlorite] (bleach)					10.9	
L	Mg(OH) ₂ Milk of Magnesia					12.2	
М	Lemon juice					3.8	
N	Milk	red	red	6	7	6.4	
0	Saliva (spit) and blood	blue	blue	7	7	7-3	
Р	Vomit	red	red	1	2	1.9	
Q	Buffer (pH 7)	red	blue	7	7	7.0	

Chem 108: Class/ Lab Week 13

1) Fluid Exchange (Handout) *Due Next Lab*

TODAY:
2) Acid-Base: pH (Handout)
Data table completed & signed before leaving Lab

Due Next Week: Fully Completed Handout plus On-line Questions http://chemconnections.org/general/chem108/Acids-Bases%20Guide.html